Limit Properties of Doubly Quiescent m-Asynchronous Elementary Cellular Automata
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Modèles Discrets pour les Systèmes Complexes (Laboratoire I3S - MDSC) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Dipartimento di Informatica Sistemistica e Comunicazione (DISCo) ; Università degli Studi di Milano-Bicocca = University of Milano-Bicocca (UNIMIB)
- ANR-09-BLAN-0164,EMC,Emergence dans les modèles de calcul(2009)
Description
The standard cellular automata (CA) model is based on three main features: locality, uniformity and synchronicity. Recently, some variants have been introduced, most of them consist in relaxing one of those three properties. In this paper, we study the dynamical behavior of m-ACA (using fair measures), a variant of cellular automata in which the synchronicity property has been relaxed. Inspired by literature about α-asynchronous CA (a special case of m-ACA), the paper focuses on doubly quiescent elementary rules i.e., rules with radius 1, boolean alphabet and such that homogeneuous configurations are fixed points. We show that for many of these rules, the limit behavior is fully characterized by a subshift of finite type.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01313561
- URN
- urn:oai:HAL:hal-01313561v1
- Origin repository
- UNICA