Published December 2020 | Version v1
Journal article

Observation of supersymmetric pseudo-Landau levels in strained microwave graphene

Description

Using an array of coupled microwave resonators arranged in a deformed honeycomb lattice, we experimentally observe the formation of pseudo-Landau levels in the whole crossover from vanishing to large pseudomagnetic field strength. This is achieved by utilizing an adaptable setup in a geometry that is compatible with the pseudo-Landau levels at all field strengths. The adopted approach enables us to observe fully formed flat-band pseudo-Landau levels spectrally as sharp peaks in the photonic density of states, and image the associated wavefunctions spatially, where we provide clear evidence for a characteristic nodal structure reflecting the previously elusive supersymmetry in the underlying low-energy theory. In particular, we resolve the full sublattice polarization of the anomalous 0th pseudo-Landau level, which reveals a deep connection to zigzag edge states in the unstrained case.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 28, 2023