Published January 12, 2020
| Version v1
Conference paper
Internal Calculi for Separation Logic
- Others:
- Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Spécification et Vérification [Cachan] (LSV) ; École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
We present a general approach to axiomatise separation logics with heaplet semantics with no external features such as nominals/labels. To start with, we design the first (internal) Hilbert-style axiomatisation for the quantifier-free separation logic SL(*, −*). We instantiate the method by introducing a new separation logic with essential features: it is equipped with the separating conjunction, the predicate ls, and a natural guarded form of first-order quantification. We apply our approach for its axiomatisation. As a by-product of our method, we also establish the exact expressive power of this new logic and we show PSpace-completeness of its satisfiability problem.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02883558
- URN
- urn:oai:HAL:hal-02883558v1
- Origin repository
- UNICA