Combining spatial and temporal patches for scalable video indexing
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe IMAGES-CREATIVE ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- ANR-06-MDCA-0010,ICOS-HD,Indexation et compression scalables et conjointes pour la gestion de contenus vidéo de Haute Définition(2006)
Description
This paper tackles the problem of scalable video indexing. We propose a new framework combining spatial and motion patch descriptors. The spatial descriptors are based on a multiscale description of the image and are called Sparse Multiscale Patches. We propose motion patch descriptors based on block motion that describe the motion in a Group of Pictures. The distributions of these sets of patches are compared combining weighted Kullback-Leibler divergences between spatial and motion patches. These divergences are estimated in a non-parametric framework using a k-th Nearest Neighbor estimator. We evaluate this weighted dissimilarity measure on selected videos from the ICOS-HD ANR project. Experiments show that the spatial part of the measure is relevant to detect different sequences, while its motion part allows to detect clips within a sequence. Experiments combining the spatial and temporal parts of the dissimilarity measure show its robustness to resampling and compression; thus exhibiting the spatial scalability of the method on heterogeneous networks.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00420850
- URN
- urn:oai:HAL:hal-00420850v1
- Origin repository
- UNICA