Vesicle capture by membrane-bound Munc13-1 requires selfassembly into discrete clusters
- Others:
- Centre de recherche sur l'hétéroepitaxie et ses applications (CRHEA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Yale School of Medicine [New Haven, Connecticut] (YSM)
- Department of Cell Biology [New Haven] ; Yale School of Medicine [New Haven, Connecticut] (YSM)-Howard Hughes Medical Institute (HHMI)
- Laboratoire Charles Coulomb (L2C) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de physique de l'ENS - ENS Paris (LPENS) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)-Département de Physique de l'ENS-PSL ; École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
Description
Munc13-1 is a large banana-shaped soluble protein that is involved in the regulation of synaptic vesicle docking and fusion. Recent studies suggest that multiple copies of Munc13-1 form nanoassemblies in active zones of neurons. However, it is not known if such clustering of Munc13-1 is correlated with multivalent binding to synaptic vesicles or specific plasma membrane domains at docking sites in the active zone. The functional significance of putative Munc13-1 clustering is also unknown. Here we report that nano-clustering is an inherent property of Munc13-1, and is indeed required for vesicle binding to bilayers containing Munc13-1. Purified Munc13-1 protein reconstituted onto supported lipid bilayers assembled into clusters containing from 2 to ~20 copies as revealed by a combination of quantitative TIRF microscopy and step-wise photobleaching. Surprisingly, only clusters containing a minimum of 6 copies of Munc13-1 were capable of efficiently capturing and retaining small unilamellar vesicles. The C-terminal C 2 C domain of Munc13-1 is not required for Munc13-1 clustering, but is required for efficient vesicle capture. This capture is largely due to a combination of electrostatic and hydrophobic interactions between the C 2 C domain and the vesicle membrane.
Abstract
International audience
Additional details
- URL
- https://hal.sorbonne-universite.fr/hal-03297036
- URN
- urn:oai:HAL:hal-03297036v1
- Origin repository
- UNICA