Published November 22, 2015
| Version v1
Journal article
Nonlinear wave-current interactions in shallow water
Creators
Contributors
Others:
- Institut de Mathématiques de Bordeaux (IMB) ; Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux (Bordeaux INP)-Centre National de la Recherche Scientifique (CNRS)
- Institut Montpelliérain Alexander Grothendieck (IMAG) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- Littoral, Environment: MOdels and Numerics (LEMON) ; Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Montpelliérain Alexander Grothendieck (IMAG) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Hydrosciences Montpellier (HSM) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- CNRS project LEFE-MANU SOLi
- ANR-13-BS01-0009,BoND,Frontières, numérique, dispersion.(2013)
- ANR-13-BS01-0003,DYFICOLTI,DYnamique des Fluides, Couches Limites, Tourbillons et Interfaces(2013)
Description
We study here the propagation of long waves in the presence of vorticity. In the irrotational framework, the Green-Naghdi equations (also called Serre or fully nonlinear Boussinesq equations) are the standard model for the propagation of such waves. These equations couple the surface elevation to the vertically averaged horizontal velocity and are therefore independent of the vertical variable. In the presence of vorticity, the dependence on the vertical variable cannot be removed from the vorticity equation but it was however shown in [9] that the motion of the waves could be described using an extended Green-Naghdi system. In this paper we propose an analysis of these equations, and show that they can be used to get some new insight into wave-current interactions. We show in particular that solitary waves may have a drastically different behavior in the presence of vorticity and show the existence of solitary waves of maximal amplitude with a peak at their crest, whose angle depends on the vorticity. We also propose a robust and simple numerical scheme validated on several examples. Finally, we give some examples of wave-current interactions with a non trivial vorticity field and topography effects.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-01331247
- URN
- urn:oai:HAL:hal-01331247v2
Origin repository
- Origin repository
- UNICA