A framework for creating population specific multimodal brain atlas using clinical T1 and diffusion tensor images
- Others:
- Analysis and Simulation of Biomedical Images (ASCLEPIOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Morphologie et Images (MORPHEME) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut de Biologie Valrose (IBV) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- European Project: 291080,EC:FP7:ERC,ERC-2011-ADG_20110209,MEDYMA(2012)
Description
Spatial normalization is one of the most important steps in population based statistical analysis of brain images. This involves normalizing all the brain images to a pre-defined template or a population specific template. With multiple emerging imaging modalities, it is quintessential to develop a method for building a joint template that is a statistical representation of the given population across different modalities. It is possible to create different population specific templates in different modalities using existing methods. However, they do not give an opportunity for voxelwise comparison of different modalities. A multimodal brain template with probabilistic region of interest (ROI) definitions will give opportunity for multivariate statistical frameworks for better understanding of brain diseases. In this paper, we propose a methodology for developing such a multimodal brain atlas using the anatomical T1 images and the diffusion tensor images (DTI), along with an automated workflow to probabilistically define the different white matter regions on the population specific multimodal template. The method will be useful to carry out ROI based statistics across different modalities even in the absence of expert segmentation. We show the effectiveness of such a template using voxelwise multivariate statistical analysis on population based group studies on HIV/AIDS patients. 1 The need for a probabilistic multimodal atlas The growth in brain imaging data across different modalities gives an opportunity to understand the disease progression and make correlations across them. Statistical analysis across different modalities and across population require spatial normalization. All the brain images are often normalized to a pre-defined template, for example the ICBM-152 or MNI template. However in [1] and [2], the authors have shown that choosing a generic template biases the statistical presently at Imaging Genetics Center, University of Southern California presently at MORPHENE team, INRIA Sophia-Antipolis
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01261115
- URN
- urn:oai:HAL:hal-01261115v1
- Origin repository
- UNICA