Communication: Improving the density functional theoryU description of CeO 2 by including the contribution of the O 2p electrons
Description
Density functional theory (DFT) based approaches within the local-density approximation or generalized gradient approximation frameworks fail to predict the correct electron localization in strongly correlated systems due to the lack of cancellation of the Coulomb self-interaction. This problem might be circumvented either by using hybrid functionals or by introducing a Hubbard-like term to account for the on site interactions. This latter DFTU approach is less expensive and therefore more practical for extensive calculations in solid-state computational simulations. By and large, the U term only affects the metal electrons, in our case the Ce 4f ones. In the present work, we report a systematic analysis of the effect of adding such a U term also to the oxygen 2p electrons. We find that using a set of U f 5 eV and U p 5eV effective terms leads to improved description of the lattice parameters, band gaps, and formation and reduction energies of CeO 2
Additional details
- URL
- https://idus.us.es/handle/11441/49380
- URN
- urn:oai:idus.us.es:11441/49380
- Origin repository
- USE