Coupled State Policy Dynamics in Evolutionary Games
- Creators
- Brunetti, Ilaria
- Hayel, Yezekael
- Altman, Eitan
- Others:
- Institut National de la Recherche Agronomique (INRA)
- Unité de recherche d'Écodéveloppement (ECODEVELOPPEMENT) ; Institut National de la Recherche Agronomique (INRA)
- centre international de recherche sur l'environnement et le développement (CIRED) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-École des hautes études en sciences sociales (EHESS)-AgroParisTech-École des Ponts ParisTech (ENPC)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Informatique d'Avignon (LIA) ; Avignon Université (AU)-Centre d'Enseignement et de Recherche en Informatique - CERI
- COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- Network Engineering and Operations (NEO ) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratory of Information, Network and Communication Sciences (LINCS) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Mines-Télécom [Paris] (IMT)-Sorbonne Université (SU)
- Eitan Altman
- Konstantin Avrachenkov
- Francesco de Pellegrini
- Rachid El-Azouzi
- Huijuan Wang
- European Project: 317672,ICT,FP7-ICT-2011-8,CONGAS(2012)
Description
In this work we want to extend the EGT models by introducing the concept of individual state. We analyze a particular simple case, in which we associate a state to each player, and we suppose that this state determines the set of available actions. We consider deterministic stationary policies and we suppose that the choice of a policy determines the fitness of the player and it impacts the evolution of the state. We define the interdependent dynamics of states and policies and we introduce the State Policy coupled Dynamics (SPcD) in order to study the evolution of the population profile and we prove the relation between the rest points of our system and the equilibria of the game. We then assume that the processes of states and policies move with different velocities: this assumption allows us to solve the system and then to find the equilibria of our game with two different methods: the singular perturbation method and a matrix approach. 93
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-02413146
- URN
- urn:oai:HAL:hal-02413146v1
- Origin repository
- UNICA