Estimating abundance fractions of materials in hyperspectral images by fitting a post-nonlinear mixing model
- Creators
- Chen, Jie
- Richard, Cédric
- Honeine, Paul
- Others:
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Modélisation et Sûreté des Systèmes (LM2S) ; Institut Charles Delaunay (ICD) ; Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
Description
Within the area of hyperspectral data processing, nonlinear unmixing techniques have emerged as promising alternatives for overcoming the limitations of linear methods. In this paper, we consider the class of post-nonlinear mixing models of the partially linear form. More precisely, these composite models consist of a linear mixing part and a nonlinear fluctuation term defined in a reproducing kernel Hilbert space, both terms being parameterized by the endmember spectral signatures and their respective abundances. These models consider that the reproducing kernel may also depend advantageously on the fractional abundances. An iterative algorithm is then derived to jointly estimate the fractional abundances and to infer the nonlinear functional term.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01965999
- URN
- urn:oai:HAL:hal-01965999v1
- Origin repository
- UNICA