U-net architectures for fast prediction of incompressible laminar flows
- Creators
- Chen, Junfeng
- Viquerat, Jonathan
- Hachem, Elie
- Others:
- Centre de Mise en Forme des Matériaux (CEMEF) ; Mines Paris - PSL (École nationale supérieure des mines de Paris) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Machine learning is a popular tool that is being applied to many domains, from computer vision to natural language processing. It is not long ago that its use was extended to physics, but its capabilities remain to be accurately contoured. In this paper, we are interested in the prediction of 2D velocity and pressure fields around arbitrary shapes in laminar flows using supervised neural networks. To this end, a dataset composed of random shapes is built using Bezier curves, each shape being labeled with its pressure and velocity fields by solving Navier-Stokes equations using a CFD solver. Then, several U-net architectures are trained on the latter dataset, and their predictive efficiency is assessed on unseen shapes, using ad hoc error functions.
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02428694
- URN
- urn:oai:HAL:hal-02428694v1
- Origin repository
- UNICA