DROP COST AND WAVELENGTH OPTIMAL TWO-PERIOD GROOMING WITH RATIO 4∗
- Others:
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Computer Science and Engineering [Tempe] (CIDSE) ; Arizona State University [Tempe] (ASU)
- Dipartimento di Matematica e Informatica (DMI) ; Università degli studi di Catania = University of Catania (Unict)
- Research Group on Graph Theory and Combinatorics [Barcelona] ; Universitat Politècnica de Catalunya [Barcelona] (UPC)
Description
We study grooming for two-period optical networks, a variation of the traffic grooming problem for WDM ring networks introduced by Colbourn, Quattrocchi, and Syrotiuk. In the two-period grooming problem, during the first period of time there is all-to-all uniform traffic among $n$ nodes, each request using $1/C$ of the bandwidth; and during the second period, there is all-to-all uniform traffic only among a subset $V$ of $v$ nodes, each request now being allowed to use $1/C'$ of the bandwidth, where $C' < C$. We determine the minimum drop cost (minimum number of ADMs) for any $n,v$ and $C=4$ and $C' \in \{1,2,3\}$. To do this, we use tools of graph decompositions. Indeed the two-period grooming problem corresponds to minimizing the total number of vertices in a partition of the edges of the complete graph $K_n$ into subgraphs, where each subgraph has at most $C$ edges and where furthermore it contains at most $C'$ edges of the complete graph on $v$ specified vertices. Subject to the condition that the two-period grooming has the least drop cost, the minimum number of wavelengths required is also determined in each case.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/inria-00505516
- URN
- urn:oai:HAL:inria-00505516v1
- Origin repository
- UNICA