Skew Product Semiflows and Morse Decomposition
Description
This paper is devoted to the investigation of the dynamics of non-autonomous differential equations. The description of the asymptotic dynamics of non-autonomous equations lies on dynamical structures of some associated limiting non-autonomous - and autonomous - differential equations (one for each global solution in the attractor of the driving semigroup of the associated skew product semi-flow). In some cases, we have infinitely many limiting problems (in contrast with the autonomous - or asymptotically autonomous - case for which we have only one limiting problem; that is, the semigroup itself). We concentrate our attention in the study of the Morse decomposition of attractors for these non-autonomous limiting problems as a mean to understand some of the asymptotics of our non-autonomous differential equations. In particular, we derive a Morse decomposition for the global attractors of skew product semiflows (and thus for pullback attractors of non-autonomous differential equations) from a Morse decomposition of the attractor for the associated driving semigroup. Our theory is well suited to describe the asymptotic dynamics of non-autonomous differential equations defined on the whole line or just for positive times, or for differential equations driven by a general semigroup.
Additional details
- URL
- https://idus.us.es/handle/11441/23709
- URN
- urn:oai:idus.us.es:11441/23709
- Origin repository
- USE