On the model flexibility of the geographical distributed real-time co-simulation: The example of ENET-RT lab
Description
The decarbonization of the energy sector represents a challenge that requires new tools and approaches of analysis. This paper aims to demonstrate the fundamental role that geographical distributed real-time co-simulations (GD-RTDS) can play in this regard. To this end, three different case studies have been analyzed with GD-RTDS, covering a wide range of applications for the energy sector decarbonization: (a) implementation of Renewable Energy Communities for supporting the share increase of Renewable Energy Sources, (b) the integration and management of Onshore Power Supply, and (c) the integration of a forecasting tool for the management of the Electric Vehicle charging. The performed experiments included fully simulated components, together with (power) hardware-in-the-loop and software-in-the-loop elements. These components have been simulated in different laboratory facilities in Italy and Germany, all operating in a synchronized manner under the presented geographically-distributed setup. The results show that the proposed architecture is flexible enough to be used for modeling all the different case studies; moreover, they highlight the significant contribution that the GD-RTDS methodology can give in informing and driving energy transition policies and the fundamental role of power systems to spearhead the complete decarbonization of the energy sector.
Additional details
- URL
- https://hdl.handle.net/11567/1206376
- URN
- urn:oai:iris.unige.it:11567/1206376
- Origin repository
- UNIGE