Published May 30, 2016 | Version v1
Conference paper

Stochastic epidemiological model for the analysis of plant resistance break- down to pathogens subjected to genetic drift

Others:
Institut Sophia Agrobiotech (ISA) ; Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Unité de Pathologie Végétale (PV) ; Institut National de la Recherche Agronomique (INRA)
Biological control of artificial ecosystems (BIOCORE) ; Laboratoire d'océanographie de Villefranche (LOV) ; Observatoire océanologique de Villefranche-sur-mer (OOVM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire océanologique de Villefranche-sur-mer (OOVM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)
Santé Végétale (SV) ; Institut National de la Recherche Agronomique (INRA)-École Nationale d'Ingénieurs des Travaux Agricoles - Bordeaux (ENITAB)

Description

The deployment of pathogen-resistant crops often leads to the emergence of resistance-breaking pathogens that suppress the yield bene t provided by the resistance. In this work, we analyze if and how a modulation of the genetic drift experienced by the pathogens can slow this emergence down. For that purpose, we consider a crop patch in which a given proportion of the plants carry the qualitative resistance and suppose that genetic drift, which is genetically based, can either be added to the initial infection phases of the resistant or of the susceptible plants in the crop. We develop a stochastic SI model of the crop patch, in which only the number of susceptible and resistant infected plants need to be represented. In that model, the infection events follow a Poisson process and undergo bottleneck induced drift, limiting the probability of infection of a plant by a pathogen.Through intensive simulations of this model with the Gillespie algorithm, we show which model parameters most influence the effciency of the genetic drift for improving crop yield. Also, we analyze which combination of genetic drift level and proportion of resistant plants in the crop most improves crop yield.

Abstract

Conférence donnée dans le cadre du mini symposium de ETAMM2016 : Mathematical Modelling, Analysis and Simulations in Biology
Conférence donnée dans le cadre du mini symposium de ETAMM2016 : Mathematical Modelling, Analysis and Simulations in Biology

Abstract

International audience

Additional details

Created:
February 28, 2023
Modified:
November 30, 2023