Chemoselective Preparation of New Families of Phenolic-Organoselenium Hybrids—A Biological Assessment
Description
Being aware of the enormous biological potential of organoselenium and polyphenolic compounds, we have accomplished the preparation of novel hybrids, combining both pharma-cophores in order to obtain new antioxidant and antiproliferative agents. Three different families have been accessed in a straightforward and chemoselective fashion: carbohydrate-containing N-acylisoselenoureas, N-arylisoselenocarbamates and N-arylselenocarbamates. The nature of the organoselenium framework, number and position of phenolic hydroxyl groups and substituents on the aromatic scaffolds afforded valuable structure–activity relationships for the biological as-says accomplished: antioxidant properties (antiradical activity, DNA-protective effects, Glutathione peroxidase (GPx) mimicry) and antiproliferative activity. Regarding the antioxidant activity, selenocar-bamates 24–27 behaved as excellent mimetics of GPx in the substoichiometric elimination of H2O2 as a Reactive Oxygen Species (ROS) model. Isoselenocarbamates and particularly their selenocarbamate isomers exhibited potent antiproliferative activity against non-small lung cell lines (A549, SW1573) in the low micromolar range, with similar potency to that shown by the chemotherapeutic agent cisplatin (cis-diaminodichloroplatin, CDDP) and occasionally with more potency than etoposide (VP-16).
Abstract
Ministerio de Ciencia e Innovación PID2020-116460RB-I00
Abstract
Junta de Andalucía FQM134
Abstract
Gobierno de las Islas Canarias ProID2020010101
Additional details
- URL
- https://idus.us.es/handle//11441/130409
- URN
- urn:oai:idus.us.es:11441/130409
- Origin repository
- USE