Published 2012
| Version v1
Journal article
Algebraic Geometry tools for the study of entanglement: an application to spin squeezed states
- Creators
- Bernardi, Alessandra
- Carusotto, Iacopo
- Others:
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- BEC-INFM ; Università degli Studi di Trento (UNITN)
- European Project: 252367,EC:FP7:PEOPLE,FP7-PEOPLE-2009-IEF,DECONSTRUCT(2010)
Description
A short review of Algebraic Geometry tools for the decomposition of tensors and polynomials is given from the point of view of applications to quantum and atomic physics. Examples of application to assemblies of indistinguishable two-level bosonic atoms are discussed using modern formulations of the classical Sylvester's algorithm for the decomposition of homogeneous polynomials in two variables. In particular, the symmetric rank and symmetric border rank of spin squeezed states is calculated as well as their Schrödinger-cat-like decomposition as the sum of macroscopically different coherent spin states; Fock states provide an example of states for which the symmetric rank and the symmetric border rank are different.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/inria-00618450
- URN
- urn:oai:HAL:inria-00618450v1
- Origin repository
- UNICA