Published October 11, 2021
| Version v1
Conference paper
Zermelo-Markov-Dubins with two trailers
Contributors
Others:
- Laboratoire d'automatique, de génie des procédés et de génie pharmaceutique (LAGEPP) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-École Supérieure de Chimie Physique Électronique de Lyon (CPE)-Centre National de la Recherche Scientifique (CNRS)
- Mathematics for Control, Transport and Applications (McTAO) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut de Mathématiques de Bourgogne [Dijon] (IMB) ; Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Centre National de la Recherche Scientifique (CNRS)
Description
We study the minimum time problem for a simplified model of a ship towing a long spread of cables. Constraints are on the curvature of the trajectory as well as on the shape of what represent the spread of cables here. This model turns out to be the same as a cart towing two trailers and rolling without sleeping on a plane in uniform translation. We analyse the Hamiltonian system describing the extremal flow given by Pontrjagin maximum principle. We detail the equilibria of the system and prove that, contrary to the case of one trailer studied previously by part of the authors, it is not solvable by quadratures. Preliminary numerical results are given.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-03211710
- URN
- urn:oai:HAL:hal-03211710v3
Origin repository
- Origin repository
- UNICA