Traffic grooming in bidirectional WDM ring networks
- Others:
- Algorithms, simulation, combinatorics and optimization for telecommunications (MASCOTTE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Applied Mathematics IV Department ; Universitat Politècnica de Catalunya [Barcelona] (UPC)
- Algorithmes, Graphes et Combinatoire (ALGCO) ; Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM) ; Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)
- AEOLUS
Description
We study the minimization of ADMs (Add-Drop Multiplexers) in optical WDM bidirectional rings considering symmetric shortest path routing and all-to-all unitary requests. We precisely formulate the problem in terms of graph decompositions, and state a general lower bound for all the values of the grooming factor C and N, the size of the ring. We first study exhaustively the cases C = 1, C = 2, and C = 3, providing improved lower bounds, optimal constructions for several infinite families, as well as asymptotically optimal constructions and approximations. We then study the case C > 3, focusing specifically on the case C = k(k + 1)/2 for some k ≥ 1. We give optimal decompositions for several congruence classes of N using the existence of some combinatorial designs. We conclude with a comparison of the cost functions in unidirectional and bidirectional WDM rings.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-00643800
- URN
- urn:oai:HAL:hal-00643800v1
- Origin repository
- UNICA