Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes
- Others:
- School of Geological Sciences [Dublin] ; University College Dublin [Dublin] (UCD)
- Géoazur (GEOAZUR 6526) ; Institut de Recherche pour le Développement (IRD)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Institut des Sciences de la Terre (ISTerre) ; Université Joseph Fourier - Grenoble 1 (UJF)-Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux (IFSTTAR)-Institut national des sciences de l'Univers (INSU - CNRS)-Institut de recherche pour le développement [IRD] : UR219-PRES Université de Grenoble-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
- Tullow Oil plc
- Environmental Sciences Research Institute [Coleraine] ; University of Ulster
Description
Forecasting of volcanic eruptions is still inadequate, despite technological advances in volcano monitoring. Improved forecasting requires a deeper understanding of when unrest will lead to an actual eruption. Shallow, long-period seismic events often precede volcanic eruptions and are used in forecasting. They are thought to be generated by resonance in fluid-filled cracks or conduits, indicating the presence of near-surface magmatic fluids. Here we analyse very-high-resolution seismic data from three active volcanoes--Mount Etna in Italy, Turrialba Volcano in Costa Rica and Ubinas Volcano in Peru--measured between 2004 and 2009. We find that seismic resonance is dependent on the wave propagation path and that the sources for the long-period seismic waves are composed of short pulses. We use a numerical model to show that slow-rupture failure in unconsolidated volcanic materials can reproduce all key aspects of these observations. Therefore, contrary to current interpretations, we suggest that short-duration long-period events are not direct indicators of fluid presence and migration, but rather are markers of deformation in the upper volcanic edifice. We suggest that long-period volcano seismicity forms part of the spectrum between slow-slip earthquakes and fast dynamic rupture, as has been observed in non-volcanic environments.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-00932518
- URN
- urn:oai:HAL:hal-00932518v1
- Origin repository
- UNICA