Weighted Coloring in Trees
- Others:
- Parallelism, Graphs and Optimization Research Group (ParGO) ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- INRIA
- ANR-09-BLAN-0159,AGAPE,Algorithmes de graphes parametres et exacts(2009)
Description
A proper coloring of a graph is a partition of its vertex set into stable sets, where each part corresponds to a {\it color}. For a vertex-weighted graph, the {\it weight of a color} is the maximum weight of its vertices. The {\it weight of a coloring} is the sum of the weights of its colors. Guan and Zhu defined the {\it weighted chromatic number} of a vertex-weighted graph $G$ as the smallest weight of a proper coloring of $G$ (1997). If vertices of a graph have weight $1$, its weighted chromatic number coincides with its chromatic number. Therefore, the problem of computing the weighted chromatic number is NP-complete in general graphs. This problem remains NP-complete in some particular graph classes as bipartite graphs. In their seminal paper, Guan and Zhu asked whether the weighted chromatic number of bounded tree-width graphs (partial $k$-trees) can be computed in polynomial-time. Escoffier et al. designed a polynomial-time approximation scheme for computing the weighted chromatic number of partial $k$-trees (2006), and Kavitha and Mestre provided polynomial-time exact algorithms for sub-classes of trees (2009). Surprisingly, the time-complexity of computing this parameter in trees is still open. The Exponential Time Hypothesis (ETH) states that 3-SAT cannot be solved in sub-exponential time. We show that, assuming ETH, the best algorithm to compute the weighted chromatic number of $n$-node trees has time-complexity $n^{\Theta(\log n)}$. Our result mainly relies on proving that, when computing an optimal proper weighted coloring of a graph $G$, it is hard to combine colorings of its connected components, even when $G$ is a forest.
Abstract (French)
Nous prouvons que, en supposant qu'il n'existe aucun algorithme sous-exponentiel pour résoudre 3-SAT (ETH), alors le meilleur algorithme pour résoudre le probléme de coloration pondérée dans les arbres a une complexité de $n^{\Theta(\log n)}$, oú $n$ est la taille de l'entrée.
Additional details
- URL
- https://hal.inria.fr/hal-00794622
- URN
- urn:oai:HAL:hal-00794622v2
- Origin repository
- UNICA