Macroscopic modeling and simulations of room evacuation
- Others:
- Istituto per le Applicazioni del Calcolo "Mauro Picone" (IAC) ; Consiglio Nazionale delle Ricerche [Roma] (CNR)
- Optimization and control, numerical algorithms and integration of complex multidiscipline systems governed by PDE (OPALE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
We analyze numerically two macroscopic models of crowddynamics: the classical Hughes model and the second order model beingan extension to pedestrian motion of the Payne-Whitham vehiculartraffic model. The desired direction of motion is determined by solvingan eikonal equation with density dependent running cost, which resultsin minimization of the travel time and avoidance of congested areas. Weapply a mixed finite volume-finite element method to solve the problemsand present error analysis for the eikonal solver, gradient computationand the second order model yielding a first order convergence. We showthat Hughes' model is incapable of reproducing complex crowd dynamicssuch as stop-and-go waves and clogging at bottlenecks. Finally, usingthe second order model, we study numerically the evacuation of pedestriansfrom a room through a narrow exit.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01731335
- URN
- urn:oai:HAL:hal-01731335v1
- Origin repository
- UNICA