Published June 15, 2017 | Version v1
Journal article

Probabilistic Models Towards Controlling Smart-* Environments

Others:
GFI Informatique ; GFI Informatique
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe RAINBOW ; Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)

Description

Today, a growing amount of physical objects in our surroundings are connected to the Internet and provide the digital world with an interface to the physical world through sensors and actuators. At the heart of this trend, smart-* systems and applications leverage this interface to smartly and seamlessly assist individuals in their everyday lives. However, when interacting with the physical world by means of actuators, these applications introduce a methodological disruption. Indeed, as opposed to the classical distributed software applications operating in the bounded and predictable digital world, these applications operate in and through the physical world, open and subject to uncertainties that cannot be modeled accurately. These uncertainties lead the behavior of the applications to potentially drift at runtime, compromising their intrinsic functionality. In this paper, we propose a framework to estimate the behavioral drift of smart-* systems and applications at runtime. To this end, we first rely on the Moore Finite State Machine (FSM) modeling framework. This framework is used for specifying the ideal behavior of a smart-* application in terms of the effects it is expected to produce within the physical environment as it executes. We then appeal on the control theory and propose a framework for projecting the Moore FSM to its associated Continuous Density Input/Output Hidden Markov Model (CDIOHMM) state observer. By accounting for uncertainties through probabilities, it extends Moore FSM with viability zones, i.e. zones where the effects of a smart-* application within the physical environment are satisfactory without necessarily being perfect. At runtime, the CD-IOHMM state observer allows to compute the probability of the observed effects, i.e. it gives direct insight into the behavioral drift of the concrete application. We validate our approach on a real dataset. The results demonstrate the soundness and efficiency of the proposed approach at estimating the behavioral drift of smart-* applications at runtime. In view of these results, one can envision to use this estimation for supporting a decision-making algorithm (e.g., within a selfadaptive system).

Abstract

International audience

Additional details

Created:
February 28, 2023
Modified:
November 29, 2023