Published January 10, 2019
| Version v1
Publication
Spectral Inequalities for the Schrödinger operator
Creators
Contributors
Others:
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Statistical Laboratory [Cambridge] ; Department of Pure Mathematics and Mathematical Statistics (DPMMS) ; Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS) ; University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)-Faculty of mathematics Centre for Mathematical Sciences [Cambridge] (CMS) ; University of Cambridge [UK] (CAM)-University of Cambridge [UK] (CAM)
Description
In this paper we deal with the so-called "spectral inequalities", which yield a sharp quantification of the unique continuation for the spectral family associated with the Schrödinger operator in R^d H_{g,V} = -\Delta_g + V (x), where \Delta_g is the Laplace-Beltrami operator with respect to an analytic metric g, which is a perturbation of the Euclidean metric, and V (x) a real valued analytic potential vanishing at infinity.
Additional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-01977648
- URN
- urn:oai:HAL:hal-01977648v1
Origin repository
- Origin repository
- UNICA