Published April 9, 2018
| Version v1
Conference paper
Predicting the Possibilistic Score of OWL Axioms through Modified Support Vector Clustering
- Creators
- Malchiodi, Dario
- Tettamanzi, Andrea G. B.
- Others:
- Dipartimento di Informatica ; Università degli Studi di Milano = University of Milan (UNIMI)
- Web-Instrumented Man-Machine Interactions, Communities and Semantics (WIMMICS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
We address the problem of predicting a score for candidate axioms within the context of ontology learning. The prediction is based on a learning procedure based on support vector clustering originally developed for inferring the membership functions of fuzzy sets, and on a similarity measure for subsumption axioms based on semantic considerations and reminiscent of the Jaccard index. We show that the proposed method successfully learns the possibilistic score in a knowledge base consisting of pairs of candidate OWL axioms, meanwhile highlighting that a small subset of the considered axioms turns out harder to learn than the remainder.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01822443
- URN
- urn:oai:HAL:hal-01822443v1
- Origin repository
- UNICA