Published January 31, 2012 | Version v1
Journal article

New resolution strategy for multi-scale reaction waves using time operator splitting, space adaptive multiresolution and dedicated high order implicit/explicit time integrators

Others:
Laboratoire d'Énergétique Moléculaire et Macroscopique, Combustion (EM2C) ; CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI) ; Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919) ; Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
Institut Camille Jordan [Villeurbanne] (ICJ) ; École Centrale de Lyon (ECL) ; Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon) ; Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet [Saint-Étienne] (UJM)-Centre National de la Recherche Scientifique (CNRS)
Numerical Medicine (NUMED) ; Unité de Mathématiques Pures et Appliquées (UMPA-ENSL) ; École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Lyon (ENS Lyon)-Centre National de la Recherche Scientifique (CNRS)-Inria Grenoble - Rhône-Alpes ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
This research was supported by a fundamental projects grant from ANR (French National Research Agency - ANR Blancs) ''Séchelles", Project leader S. Descombes, by a CNRS Ph.D. grant for M. Duarte from the Institute of Mathematics (INSMI) and Engineering Institute (INSIS) of CNRS, and through a PEPS Maths-ST2I CNRS project (V. Louvet).
ANR-09-BLAN-0075,Séchelles,Simulation et comparaison avec l'expérience pour la validation de modèles de problèmes multi-échelles.(2009)

Citation

An error occurred while generating the citation.

Description

In this paper, we tackle the numerical simulation of reaction-diffusion equations modeling multiscale reaction waves. This type of problems induces peculiar diffculties and potentially large stiffness which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well as from the presence of large spatial gradients in the reactive fronts which are spatially very localized. In a series of previous studies, the numerical analysis of operator splitting techniques has been conducted and such an approach has shown a great potential in the framework of reaction-diffusion and convection-diffusion-reaction systems. However, even if a firm theoretical background is available, an optimal strategy for high performance numerical simulation is still needed. In this paper, we introduce a new strategy for reaction-diffusion systems based on time operator splitting in the context of very localized and very stiff reaction fronts. It provides an optimal combination of adaptive spatial multiresolution, implicit resolution of reaction and explicit resolution of diffusion. The optimality is reached in terms of the choice of the operator splitting time step which, in the framework of self-similar reaction waves, allows a very good combination of the various dedicated solvers used in the proposed strategy. The computational effciency is then evaluated through the numerical simulation of configurations which were so far out of reach of standard methods in the field of nonlinear chemical dynamics for spiral waves and scroll waves as an illustration.

Abstract

International audience

Additional details

Created:
December 4, 2022
Modified:
November 29, 2023