Whistler-mode waves in the tail of Mercury's magnetosphere: A numerical study
- Others:
- Laboratoire de Physique des Plasmas (LPP) ; Observatoire de Paris ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-École polytechnique (X) ; Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- University of Pisa - Università di Pisa
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E) ; Observatoire des Sciences de l'Univers en région Centre (OSUC) ; Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris ; Université Paris Sciences et Lettres (PSL)-Université Paris Sciences et Lettres (PSL)-Université d'Orléans (UO)-Centre National de la Recherche Scientifique (CNRS)-Centre National d'Études Spatiales [Paris] (CNES)
Description
Context. Mercury presents a highly dynamic, small magnetosphere in which magnetic reconnection plays a fundamental role.Aim. We aim to model the global characteristics of magnetic reconnection in the Hermean environment. In particular, we focus on waves observed during the third BepiColombo flyby.Method. In this work, we used two fully kinetic three-dimensional (3D) simulations carried out with the iPIC3D code, which models the interaction of the solar wind with the Hermean magnetosphere. For the simulations, we used southward solar wind conditions that allow for a maximum magnetic coupling between the solar wind and the planet.Results. Our simulations show that a significant wave activity, triggered by magnetic reconnection, develops near the diffusion region in the magnetotail and propagates at large scales in the night-side magnetosphere. We see an increase in electron temperature close to the diffusion region and we specifically observe narrowband whistler waves developing near the reconnection region. These waves propagate nearly parallel to the magnetic field at frequency f ∼ 0.5fce. In addition to the electromagnetic component, these waves also exhibit an electrostatic one. Furthermore, we observe a strong electron temperature anisotropy, suggesting it plays a role as the source of these waves.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-04649049
- URN
- urn:oai:HAL:hal-04649049v2
- Origin repository
- UNICA