Published June 2024
| Version v1
Conference paper
PoNQ: a Neural QEM-based Mesh Representation
Contributors
Others:
- Université Côte d'Azur (UniCA)
- Geometric Modeling of 3D Environments (TITANE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX) ; École polytechnique (X) ; Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)
- La Géometrie au Service du Numérique (GEOMERIX) ; Laboratoire d'informatique de l'École polytechnique [Palaiseau] (LIX) ; École polytechnique (X) ; Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X) ; Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)
- École polytechnique (X) ; Institut Polytechnique de Paris (IP Paris)
- Institut Polytechnique de Paris (IP Paris)
- Département d'informatique de l'École polytechnique (X-DEP-INFO) ; École polytechnique (X) ; Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)
Description
Although polygon meshes have been a standard representation in geometry processing, their irregular and combinatorial nature hinders their suitability for learning-based applications. In this work, we introduce a novel learnable mesh representation through a set of local 3D sample Points and their associated Normals and Quadric error metrics (QEM) w.r.t. the underlying shape, which we denote PoNQ. A global mesh is directly derived from PoNQ by efficiently leveraging the knowledge of the local quadric errors. Besides marking the first use of QEM within a neural shape representation, our contribution guarantees both topological and geometrical properties by ensuring that a PoNQ mesh does not self-intersect and is always the boundary of a volume. Notably, our representation does not rely on a regular grid, is supervised directly by the target surface alone, and also handles open surfaces with boundaries and/or sharp features. We demonstrate the efficacy of PoNQ through a learning-based mesh prediction from SDF grids and show that our method surpasses recent state-of-the-art techniques in terms of both surface and edge-based metrics.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04706248
- URN
- urn:oai:HAL:hal-04706248v1
Origin repository
- Origin repository
- UNICA