Published 2023 | Version v1
Publication

Tonoplast cytochrome b561 is a transmembrane ascorbate‐dependent monodehydroascorbate reductase: functional characterization of electron currents in plant vacuoles

Description

center dot Ascorbate (Asc) is a major redox buffer of plant cells, whose antioxidant activity depends on the ratio with its one-electron oxidation product monodehydroascorbate (MDHA). The cytoplasm contains millimolar concentrations of Asc and soluble enzymes that can regenerate Asc from MDHA or fully oxidized dehydroascorbate. Also, vacuoles contain Asc, but no soluble Asc-regenerating enzymes.center dot Here, we show that vacuoles isolated from Arabidopsis mesophyll cells contain a tonoplast electron transport system that works as a reversible, Asc-dependent transmembrane MDHA oxidoreductase. Electron currents were measured by patch-clamp on isolated vacuoles and found to depend on the availability of Asc (electron donor) and ferricyanide or MDHA (electron acceptors) on opposite sides of the tonoplast.center dot Electron currents were catalyzed by cytochrome b561 isoform A (CYB561A), a tonoplast redox protein with cytoplasmic and luminal Asc binding sites. The K-m for Asc of the luminal (4.5 mM) and cytoplasmic site (51 mM) reflected the physiological Asc concentrations in these compartments. The maximal current amplitude was similar in both directions.center dot Mutant plants with impaired CYB561A expression showed no detectable trans-tonoplast electron currents and strong accumulation of leaf anthocyanins under excessive illumination, suggesting a redox-modulation exerted by CYB561A on the typical anthocyanin response to high-light stress.

Additional details

Created:
July 11, 2024
Modified:
July 11, 2024