The non-linear sewing lemma III : stability and generic properties
- Creators
- Brault, Antoine
- Lejay, Antoine
- Others:
- Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145) ; Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Center for Mathematical Modelling - Centro de Modelamiento Matematico [Santiago] (CMM) ; Universidad de Chile = University of Chile [Santiago] (UCHILE)-Centre National de la Recherche Scientifique (CNRS)
- Institut Élie Cartan de Lorraine (IECL) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- TO Simulate and CAlibrate stochastic models (TOSCA) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Élie Cartan de Lorraine (IECL) ; Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
- Center for Mathematical Modeling, Conicyt fund AFB 170001
Description
Solutions of Rough Differential Equations (RDE) may be defined as paths whose increments are close to an approximation of the associated flow. They are constructed through a discrete scheme using a non-linear sewing lemma. In this article, we show that such solutions also solve a fixed point problem by exhibiting a suitable functional. Convergence then follows from consistency and stability, two notions that are adapted to our framework. In addition, we show that uniqueness and convergence of discrete approximations is a generic property, meaning that it holds excepted for a set of vector fields and starting points which is of Baire first category. At last, we show that Brownian flows are almost surely unique solutions to RDE associated to Lipschitz flows. The later property yields almost sure convergence of Milstein schemes.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-02265268
- URN
- urn:oai:HAL:hal-02265268v2
- Origin repository
- UNICA