Published 2014
| Version v1
Journal article
Attractor computation using interconnected Boolean networks: testing growth rate models in E. Coli
Creators
Contributors
Others:
- Biological control of artificial ecosystems (BIOCORE) ; Laboratoire d'océanographie de Villefranche (LOV) ; Observatoire océanologique de Villefranche-sur-mer (OOVM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire océanologique de Villefranche-sur-mer (OOVM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)
- ANR-11-BINF-0005,RESET,Eteindre et rallumer la machinerie d'expression génique chez les bactéries: de modèles mathématiques aux applications biotechnologiques(2011)
Description
Boolean networks provide a useful tool to address questions on the structure of large biochemical interactions since they do not require kinetic details and, in addition, a wide range of computational tools and algorithms is available to exactly compute and study the dynamical properties of these models. A recently developed method has shown that the attractors, or asymptotic behavior, of an asynchronous Boolean network can be computed at a much lower cost if the network is written as an interconnection of two smaller modules. We have applied this methodology to study the interconnection of two Boolean models to explore bacterial growth and its interactions with the cellular gene expression machinery, with a focus on growth dynamics as a function of ribosomes, RNA polymerase and other "bulk" proteins inside the cell. The discrete framework permits easier testing of different combinations of biochemical interactions, leading to hypotheses elimination and model discrimination, and thus providing useful insights for the construction of a more detailed dynamical growth model.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-01095196
- URN
- urn:oai:HAL:hal-01095196v1
Origin repository
- Origin repository
- UNICA