Published 2014
| Version v1
Book section
Towards Real-Time Control of Gene Expression at the Single Cell Level: A Stochastic Control Approach
Contributors
Others:
- Delft Center for Systems and Control [Delft] (DCSC) ; Delft University of Technology (TU Delft)
- Biological control of artificial ecosystems (BIOCORE) ; Laboratoire d'océanographie de Villefranche (LOV) ; Observatoire océanologique de Villefranche-sur-mer (OOVM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire océanologique de Villefranche-sur-mer (OOVM) ; Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria d'Université Côte d'Azur (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de la Recherche Agronomique (INRA)
- Modeling, simulation, measurement, and control of bacterial regulatory networks (IBIS) ; Laboratoire Adaptation et pathogénie des micro-organismes [Grenoble] (LAPM) ; Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Centre National de la Recherche Scientifique (CNRS)-Centre Inria de l'Université Grenoble Alpes ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Institut Jean Roget
- Matière et Systèmes Complexes (MSC) ; Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
- Computational systems biology and optimization (Lifeware) ; Inria Paris-Rocquencourt ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Department of Computer Science [Oxford] ; University of Oxford
- ANR-10-BINF-0006,Iceberg,Des modèles de population aux populations de modèles: observation, modélisation et contrôle de l'expression génique au niveau de la cellule unique(2010)
Description
Recent works have demonstrated the experimental feasibility of real-time gene expression control based on deterministic controllers. By taking control of the level of intracellular proteins, one can probe single-cell dynamics with unprecedented flexibility. However, single-cell dynamics are stochastic in nature, and a control framework explicitly accounting for this variability is presently lacking. Here we devise a stochastic control framework, based on Model Predictive Control, which fills this gap. Based on a stochastic modelling of the gene response dynamics, our approach combines a full state-feedback receding-horizon controller with a real-time estimation method that compensates for unobserved state variables. Using previously developed models of osmostress-inducible gene expression in yeast, we show in silico that our stochastic control approach outperforms deterministic control design in the regulation of single cells. The present new contribution leads to envision the application of the proposed framework to wetlab experiments on yeast.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-01096959
- URN
- urn:oai:HAL:hal-01096959v1
Origin repository
- Origin repository
- UNICA