Published May 8, 2007
| Version v1
Journal article
Chaos in Robert Hooke's inverted cone
- Others:
- Institut Non Linéaire de Nice Sophia-Antipolis (INLN) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institut Robert Hooke, université de Nice
Description
Robert Hooke is perhaps one of the first scientists to have met chaotic motions. Indeed, to invert a cone and let a ball move in it was a mechanical model used by him to mimic the motion of a planet around a centre of force like the Sun. However, as the cone is inclined with respect to the gravity field, the perfect rosace followed by the particle becomes chaotic meanderings. We revisit this classical experiment designed by Hooke with the modern tools of dynamical systems and chaos theory. By a combination of both numerical simulations and experiments, we prove that the scenario of transition to the chaotic behaviour is through a period-doubling instability.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01680248
- URN
- urn:oai:HAL:hal-01680248v1
- Origin repository
- UNICA