Published 2013 | Version v1
Journal article

Oriented trees in digraphs

Others:
Department of Mathematics and Statistics [Montréal] ; McGill University = Université McGill [Montréal, Canada]
Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Parallelism, Graphs and Optimization Research Group (ParGO) ; Universidade Federal do Ceará = Federal University of Ceará (UFC)
Laboratoire de l'Informatique du Parallélisme (LIP) ; École normale supérieure - Lyon (ENS Lyon)-Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)

Description

Let $f(k)$ be the smallest integer such that every $f(k)$-chromatic digraph contains every oriented tree of order $k$. Burr proved $f(k)\leq (k-1)^2$ in general, and he conjectured $f(k)=2k-2$. Burr also proved that every $(8k-7)$-chromatic digraph contains every antidirected tree. We improve both of Burr's bounds. We show that $f(k)\leq k^2/2-k/2+1$ and that every antidirected tree of order $k$ is contained in every $(5k-9)$-chromatic digraph. We make a conjecture that explains why antidirected trees are easier to handle. It states that if $|E(D)| > (k-2) |V(D)|$, then the digraph $D$ contains every antidirected tree of order $k$. This is a common strengthening of both Burr's conjecture for antidirected trees and the celebrated Erd\H{o}s-Sós Conjecture. The analogue of our conjecture for general trees is false, no matter what function $f(k)$ is used in place of $k-2$. We prove our conjecture for antidirected trees of diameter 3 and present some other evidence for it. Along the way, we show that every acyclic $k$-chromatic digraph contains every oriented tree of order $k$ and suggest a number of approaches for making further progress on Burr's conjecture.

Abstract

International audience

Additional details

Created:
February 28, 2023
Modified:
November 30, 2023