Pupal diapause development and termination is driven by low temperature chilling in <em>Bactrocera minax</em>
- Others:
- College of Plant Science & Technology ; Huazhong Agricultural University [Wuhan] (HZAU)
- Queensland University of Technology
- FAO Sub-regional Office for Eastern Africa [Addis Ababa, Ethiopie] (FAO) ; Food and Agriculture Organization of the United Nations [Rome, Italie] (FAO)
- Institut Sophia Agrobiotech (ISA) ; Institut National de la Recherche Agronomique (INRA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
Description
Bactrocera minax is a major citrus pest in China, Bhutan, and India. It is univoltine and exhibits pupal diapause during winter. To better understand pupal diapause in this pest, we investigated pupal survival and pupal developmental duration under field and laboratory conditions. Specifically, we tested if pupal chilling was required for diapause development and termination. Nearly all mature larvae collected at the end of the citrus season entered pupal diapause. For pupae exposed in the field, natural chilling for less than 3 months resulted in more than 70 % mortality. However, exposure to winter conditions for 3 months or more both decreased pupal mortality and developmental duration when pupae were returned to the laboratory and held under constant temperature (25 A degrees C). When pupae were gathered from the field in November and exposed to different chilling regimes in the laboratory, the chilling duration (30 vs 60 days) had significantly more impact on pupal survival than the specific chilling temperature (6, 8, 10, or 12 A degrees C constant). However, both chilling duration and chilling temperature impacted on the pupal developmental duration, with longer chilling duration and higher temperatures decreasing pupal developmental duration. In conclusion, we demonstrated that pupal diapause development and termination in B. minax is strongly influenced by chilling conditions. Increasing cold exposure led to significantly and consistently faster adult eclosion and improved synchronization of adult emergence. This knowledge will help with the laboratory rearing of B. minax, an essential step in the long-term management of this pest.
Abstract
International audience
Additional details
- URL
- https://hal.inrae.fr/hal-02652411
- URN
- urn:oai:HAL:hal-02652411v1
- Origin repository
- UNICA