Published 2013
| Version v1
Conference paper
Constrained Kaczmarz's Cyclic Projections for Unmixing Hyperspectral Data
- Creators
- Honeine, Paul
- Lantéri, Henri
- Richard, Cédric
- Others:
- Laboratoire Modélisation et Sûreté des Systèmes (LM2S) ; Institut Charles Delaunay (ICD) ; Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
- Joseph Louis LAGRANGE (LAGRANGE) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Université Côte d'Azur (UCA)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Université Nice Sophia Antipolis - Faculté des Sciences (UNS UFR Sciences) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)
- ANR-12-BS03-0003,HYPANEMA,Algorithmes de démélange non linéaire pour l'analyse de données hyperspectrales(2012)
Description
The estimation of fractional abundances under physical constraints is a fundamental problem in hyperspectral data processing. In this paper, we propose to adapt Kaczmarz's cyclic projections to solve this problem. The main contribution of this work is two-fold: On the one hand, we show that the non-negativity and the sum-to-one constraints can be easily imposed in Kaczmarz's cyclic projections, and on the second hand, we illustrate that these constraints are advantageous in the convergence behavior of the algorithm. To this end, we derive theoretical results on the convergence performance, both in the noiseless case and in the case of noisy data. Experimental results show the relevance of the proposed method.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-01966006
- URN
- urn:oai:HAL:hal-01966006v1
- Origin repository
- UNICA