Published May 2017 | Version v1
Conference paper

Surrogates and Classification Approaches for Efficient Global Optimization (EGO) with Inequality Constraints

Others:
Institut de Recherche de l'Ecole Navale (IRENAV) ; Université de Bordeaux (UB)-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)-Arts et Métiers Sciences et Technologies ; HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)-HESAM Université - Communauté d'universités et d'établissements Hautes écoles Sorbonne Arts et métiers université (HESAM)
Analysis and Control of Unsteady Models for Engineering Sciences (ACUMES) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur (LIMSI) ; Université Paris-Sud - Paris 11 (UP11)-Sorbonne Université - UFR d'Ingénierie (UFR 919) ; Sorbonne Université (SU)-Sorbonne Université (SU)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Saclay (COmUE)
Bio-Indicateurs Actuels et Fossiles (BIAF) ; Université d'Angers (UA)
AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (AROMATH) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens (NKUA)
MyCFD ; MyCFD

Description

In this work, we compare the use of Gaussian Process (GP) models for the constraints with a classification approach relying on a Least-Squares Support Vector Machine (LS-SVM). We propose several adaptations of the classification approach in order to improve the efficiency of the EGO procedure, in particular an extension of the binary LS-SVM classifier to come-up with a probabilistic estimation of the feasible domain. The efficiencies of the GP models and classification methods are compared in term of computational complexities, distinguishing the construction of the GPmodels or LS-SVM classifier from the resolution of the optimization problem. The effect of the number of design parameters on the numerical costs is also investigated.The approaches are tested on the optimization of a complex non-linear Fluid-Structure Interaction system modeling a two dimensional flexible hydrofoil. Multi-design variables, defining the unloaded geometry of the foil and the characteristics of its elastic trailing edge, are used in the minimization of the foil's drag, under constraints set to ensure minimal lift force and prevent cavitation at selected boat-speeds.

Abstract

International audience

Additional details

Created:
February 28, 2023
Modified:
December 1, 2023