High order DGTD solver for the numerical modeling of nanoscale light/matter interaction
- Others:
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Nanophotonics is the field of science and technology which aimed at establishing and using the peculiar properties of light and light-matter interaction in various nanostructures. Nanopho-tonics includes all the phenomena that are used in optical sciences for the development of optical devices. Because of its numerous scientific and technological applications (e.g. in relation to telecommunication, energy production and biomedicine), nanophotonics represents an active field of research increasingly relying on numerical modeling beside experimental studies. Plasmonics is a related field to nanophotonics involving metalic nanostructures whose optical scattering is dominated by the response of the conduction electrons [1]. The numerical modeling of light interaction with metallic nanostructures requires to solve the system of time-domain Maxwell equations coupled to appropriate models of physical dispersion in the metal such as the Drude and Drude-Lorentz models. In this talk, we will report on our recent efforts aiming at the development of a family of high order finite element type time-domain solvers for the numerical treatment of nanophotonics applications in the linear regime. The proposed method is an extension of the so-called DGTD (Discontinuous Galerkin Time-Domain) method that was initially proposed for the simulation of electromagnetic wave propagation in non-dispersive heterogeneous media at microwave frequencies [2]-[3]. For the numerical treatment of dispersion models in metals, we have adopted an Auxiliary Differential Equation (ADE) technique leading to solve the time-domain Maxwell equations coupled to a ODEs.
Abstract
International audience
Additional details
- URL
- https://hal.inria.fr/hal-01404672
- URN
- urn:oai:HAL:hal-01404672v1
- Origin repository
- UNICA