Published November 15, 2013
| Version v1
Journal article
Constructing analysis-suitable parameterization of computational domain from CAD boundary by variational harmonic method
Contributors
Others:
- Geometry, algebra, algorithms (GALAAD) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)
- College of computer - Hangzhou Dianzi University ; Hangzhou Dianzi University (HDU)
- Optimization and control, numerical algorithms and integration of complex multidiscipline systems governed by PDE (OPALE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- European Project: 218536,EC:FP7:TPT,FP7-SST-2007-RTD-1,EXCITING(2008)
Description
In isogeometric analysis, parameterization of computational domain has great effects as mesh generation in finite element analysis. In this paper, based on the concept of harmonic mapping from the computational domain to parametric domain, a variational harmonic approach is proposed to construct analysis-suitable parameterization of computational domain from CAD boundary for 2D and 3D isogeometric applications. Different from the previous elliptic mesh generation method in finite element analysis, the proposed method focus on isogeometric version, and converts the elliptic PDE into a nonlinear optimization problem, in which a regular term is integrated into the optimization formulation to achieve more uniform and orthogonal iso-parametric structure near convex (concave) parts of the boundary. Several examples are presented to show the efficiency of the proposed method in 2D and 3D isogeometric analysis.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.inria.fr/hal-00836413
- URN
- urn:oai:HAL:hal-00836413v1
Origin repository
- Origin repository
- UNICA