Tensor Train Representation of MIMO Channels using the JIRAFE Method
- Others:
- Laboratoire des signaux et systèmes (L2S) ; Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
- Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL) ; Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia-Antipolis (I3S) / Equipe SIGNAL ; Signal, Images et Systèmes (Laboratoire I3S - SIS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
MIMO technology has been subject of increasing interest in both academia and industry for future wireless standards. However, its performance benefits strongly depend on the accuracy of the channel at the base station. In a recent work, a fourth-order channel tensor model was proposed for MIMO systems. In this paper, we extend this model by exploiting additional spatial diversity at the receiver, which induces a fifth order tensor model for the channel. For such high orders, there is a crucial need to break the initial high-dimensional optimization problem into a collection of smaller coupled optimization sub-problems. This paper exploits new results on the equivalence between the canonical polyadic decomposition (CPD) and the tensor train (TT) decomposition for the multi-path scenario. Specifically, we propose a Joint dImensionality Reduction And Factor rEtrieval (JIRAFE) method to find the transmit and receive spatial signatures as well as the complex path gains (which also capture the polarization effects). Monte Carlo simulations show that our proposed TT-based representation of the channel is more robust to noise and computationally more attractive than available competing tensor-based methods, for physical parameters estimation.
Abstract
International audience
Additional details
- URL
- https://hal.archives-ouvertes.fr/hal-02436367
- URN
- urn:oai:HAL:hal-02436367v1
- Origin repository
- UNICA