GenMiner: mining informative association rules from genomic data
- Others:
- Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Institute of Developmental Biology and Cancer (IBDC) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
GENMINER is a smart adaptation of closed itemsets based association rules extraction to genomic data. It takes advantage of the novel NORDI discretization method and of the CLOSE algorithm to efficiently generate minimal non-redundant association rules. GENMINER facilitates the integration of numerous sources of biological information such as gene expressions and annotations, and can tacitly integrate qualitative information on biological conditions (age, sex, etc.). We validated this approach analyzing the microarray datasets used by Eisen et al. with several sources of biological annotations. Extracted associations revealed significantco-annotatedand co-expressed gene patterns, showing important biological relationshipsbetween genes and their features. Several of these relationships are supported by recent biological literature.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01154856
- URN
- urn:oai:HAL:hal-01154856v1
- Origin repository
- UNICA