Published December 17, 2021
| Version v1
Publication
Model-based Clustering with Missing Not At Random Data
Contributors
Others:
- Université Côte d'Azur (UCA)
- Modèles et algorithmes pour l'intelligence artificielle (MAASAI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Scalable and Pervasive softwARe and Knowledge Systems (Laboratoire I3S - SPARKS) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Centre National de la Recherche Scientifique (CNRS)
- Université de Rennes (UNIV-RENNES)
- Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)
- Centre National de la Recherche Scientifique (CNRS)
- Centre de Recherche en Economie et Statistique [Bruz] (CREST) ; Ecole Nationale de la Statistique et de l'Analyse de l'Information [Bruz] (ENSAI)
- Université Lille Nord (France)
- MOdel for Data Analysis and Learning (MODAL) ; Laboratoire Paul Painlevé - UMR 8524 (LPP) ; Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université de Lille, Sciences et Technologies-Inria Lille - Nord Europe ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Evaluation des technologies de santé et des pratiques médicales - ULR 2694 (METRICS) ; Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-Université de Lille-Centre Hospitalier Régional Universitaire [Lille] (CHRU Lille)-École polytechnique universitaire de Lille (Polytech Lille)
- Sorbonne Université (SU)
- Laboratoire de Probabilités, Statistique et Modélisation (LPSM (UMR_8001)) ; Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
- Méthodes numériques pour le problème de Monge-Kantorovich et Applications en sciences sociales (MOKAPLAN) ; CEntre de REcherches en MAthématiques de la DEcision (CEREMADE) ; Université Paris Dauphine-PSL ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Dauphine-PSL ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Université Paris-Saclay
- Statistique mathématique et apprentissage (CELESTE) ; Inria Saclay - Ile de France ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Mathématiques d'Orsay (LMO) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Université Catholique de l'Ouest (UCO)
- Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)
- Institut Desbrest de santé publique (IDESP) ; Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
Description
Traditional ways for handling missing values are not designed for the clustering purpose and they rarely apply to the general case, though frequent in practice, of Missing Not At Random (MNAR) values. This paper proposes to embed MNAR data directly within model-based clustering algorithms. We introduce a mixture model for different types of data (continuous, count, categorical and mixed) to jointly model the data distribution and the MNAR mechanism. Eight different MNAR models are proposed, which may depend on the underlying (unknown) classes and/or the values of the missing variables themselves. We prove the identifiability of the parameters of both the data distribution and the mechanism, whatever the type of data and the mechanism, and propose an EM or Stochastic EM algorithm to estimate them. The code is available on \url{https://github.com/AudeSportisse/Clustering-MNAR}. %\url{https://anonymous.4open.science/r/Clustering-MNAR-0201} We also prove that MNAR models for which the missingness depends on the class membership have the nice property that the statistical inference can be carried out on the data matrix concatenated with the mask by considering a MAR mechanism instead. Finally, we perform empirical evaluations for the proposed sub-models on synthetic data and we illustrate the relevance of our method on a medical register, the TraumaBase$^{\mbox{\normalsize{\textregistered}}}$ dataset.
Additional details
Identifiers
- URL
- https://hal.archives-ouvertes.fr/hal-03494674
- URN
- urn:oai:HAL:hal-03494674v2
Origin repository
- Origin repository
- UNICA