High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome.
- Others:
- Institut de Recherche sur le Cancer et le Vieillissement (IRCAN) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- Department of Cell & Systems Biology ; University of Toronto
- Centre for the Analysis of Genome Evolution and Function ; University of Toronto
- DeepSeq, Centre for Genetics and Genomics ; University of Nottingham, UK (UON)
- Centre for Genetics and Genomics ; University of Nottingham, UK (UON)
- Department of Chemistry and Molecular Biology [Gothenburg] ; University of Gothenburg (GU)
- GL is supported by CNRS, ATIP-AVENIR and ARC. JW is supported by the Royal Swedish Academy of Sciences and the Carl Trygger foundation. CAM, CCS and CAN are supported by the Biotechnology and Biological Sciences Research Council (grant numbers BB/E023754/1, BB/G001596/1); CAN is a David Phillips Fellow. ANNB is supported by a postgraduate scholarship from the Natural Sciences and Engineering Research Council of Canada.
Description
ABSTRACT: BACKGROUND: Comparative genomics is a formidable tool to identify functional elements throughout a genome. In the past ten years, studies in the budding yeast Saccharomyces cerevisiae and a set of closely related species have been instrumental in showing the benefit of analyzing patterns of sequence conservation. Increasing the number of closely related genome sequences makes the comparative genomics approach more powerful and accurate. RESULTS: Here, we report the genome sequence and analysis of Saccharomyces arboricolus, a yeast species recently isolated in China, that is closely related to S. cerevisiae. We obtained high quality de novo sequence and assemblies using a combination of next generation sequencing technologies, established the phylogenetic position of this species and considered its phenotypic profile under multiple environmental conditions in the light of its gene content and phylogeny. CONCLUSIONS: We suggest that the genome of S. arboricolus will be useful in future comparative genomics analysis of the Saccharomyces sensu stricto yeasts.
Abstract
International audience
Additional details
- URL
- https://www.hal.inserm.fr/inserm-00799236
- URN
- urn:oai:HAL:inserm-00799236v1
- Origin repository
- UNICA