A unified approach for Gathering and Exclusive Searching on rings under weak assumptions
- Others:
- Gran Sasso Science Institute (GSSI) ; Istituto Nazionale di Fisica Nucleare (INFN)
- Dipartimento di Matematica e Informatica [Perugia] (DMI) ; Università degli Studi di Perugia = University of Perugia (UNIPG)
- Combinatorics, Optimization and Algorithms for Telecommunications (COATI) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-COMmunications, Réseaux, systèmes Embarqués et Distribués (Laboratoire I3S - COMRED) ; Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Description
Consider a set of mobile robots placed on distinct nodes of a discrete, anonymous, and bidirectional ring. Asynchronously, each robot takes a snapshot of the ring, determining the size of the ring and which nodes are either occupied by robots or empty. Based on the observed configuration, it decides whether to move to one of its adjacent nodes or not. In the first case, it performs the computed move, eventually. This model of computation is known as Look-Compute-Move. The computation depends on the required task. In this paper, we solve both the well-known Gathering and Exclusive Searching tasks. In the former problem, all robots must simultaneously occupy the same node, eventually. In the latter problem, the aim is to clear all edges of the graph. An edge is cleared if it is traversed by a robot or if both its endpoints are occupied. We consider the exclusive searching where it must be ensured that two robots never occupy the same node. Moreover, since the robots are oblivious, the clearing is perpetual, i.e., the ring is cleared infinitely often.In the literature, most contributions are restricted to a subset of initial configurations. Here, we design two different algorithms and provide acharacterization of the initial configurations that permit the resolution of the problems under very weak assumptions. More precisely, we provide a full characterization (except for few pathological cases) of the initial configurations for which gathering can be solved. The algorithm relies on thenecessary assumption of the local-weak multiplicity detection. This means that during the Look phase a robot detects also whether the node it occupies is occupied by other robots, without acquiring the exact number.For the exclusive searching, we characterize all (except for few pathological cases) aperiodic configurations from which the problem is feasible. Wealso provide some impossibility results for the case of periodic configurations.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01326473
- URN
- urn:oai:HAL:hal-01326473v1
- Origin repository
- UNICA