Published June 4, 2024
| Version v1
Publication
Describing the critical behavior of the Anderson transition in infinite dimension by random-matrix ensembles: logarithmic multifractality and critical localization
Contributors
Others:
- National University of Singapore (NUS)
- MajuLab ; National University of Singapore (NUS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
- Laboratoire de Physique Théorique et Modèles Statistiques (LPTMS) ; Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
- Laboratoire de Physique Théorique (LPT) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Fédération de recherche « Matière et interactions » (FeRMI) ; Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse) ; Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Description
Due to their analytical tractability, random matrix ensembles serve as robust platforms for exploring exotic phenomena in systems that are computationally demanding. Building on a companion letter [arXiv:2312.17481], this paper investigates two random matrix ensembles tailored to capture the critical behavior of the Anderson transition in infinite dimension, employing both analytical techniques and extensive numerical simulations. Our study unveils two types of critical behaviors: logarithmic multifractality and critical localization. In contrast to conventional multifractality, the novel logarithmic multifractality features eigenstate moments scaling algebraically with the logarithm of the system size. Critical localization, characterized by eigenstate moments of order $q>1/2$ converging to a finite value indicating localization, exhibits characteristic logarithmic finite-size or time effects, consistent with the critical behavior observed in random regular and Erdös-Rényi graphs of effective infinite dimensionality. Using perturbative methods, we establish the existence of logarithmic multifractality and critical localization in our models. Furthermore, we explore the emergence of novel scaling behaviors in the time dynamics and spatial correlation functions. Our models provide a valuable framework for studying infinite-dimensional quantum disordered systems, and the universality of our findings enables broad applicability to systems with pronounced finite-size effects and slow dynamics, including the contentious many-body localization transition, akin to the Anderson transition in infinite dimension.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-04600045
- URN
- urn:oai:HAL:hal-04600045v1
Origin repository
- Origin repository
- UNICA