EMERGENCE OF RANDOMNESS FROM CHAOS
Description
a multiplicity of relatively simple interactions. Emergence is central to the theories of integrative levels and of complex systems [Aziz-Alaoui & Bertelle, 2009]. In this paper, we use the emergent property of the ultra weak multidimensional coupling of p 1-dimensional dynamical chaoticsystems which leads from chaos to randomness.Generation of random or pseudorandom numbers, nowadays, is a key feature of industrial mathematics. Pseudorandom or chaotic numbers are used in many areas of contemporary technology such as modern communication systems and engineering applications. More and more European or US patents using discrete mappings for this purpose are obtained by researchers of discrete dynamical systems [Petersen & Sorensen, 2007; Ruggiero et al., 2006]. Efficient Chaotic Pseudo Random Number Generators (CPRNG) have been recently introduced. They use the ultra weak multidimensional coupling of p 1-dimensional dynamical systems which preserve the chaotic properties of the continuous models in numerical experiments. Together with chaotic sampling and mixing processes, ultra weak coupling leads to families of (CPRNG) which arenoteworthy [H´enaff et al., 2009a, 2009b, 2009c, 2010].In this paper we improve again these families using a double threshold chaotic sampling instead of a single one.We analyze numerically the properties of these new families and underline their very high qualities and usefulness as CPRNG when very long series are computed. Moreover, a determining property of such improved CPRNG is the high number of parameters used and the high sensitivity to the parameters value which allows choosing it as cipher-keys. It is why we call these families multiparameter chaotic pseudo-random number generators (M-p CPRNG).
Abstract
15 pages; 15 figures.
Abstract
International audience
Additional details
- URL
- https://hal.science/hal-01326704
- URN
- urn:oai:HAL:hal-01326704v1
- Origin repository
- UNICA