Neutron-induced background by an α-beam incident on a deuterium gas target and its implications for the study of the 2H(α,γ)6Li reaction at LUNA
- Creators
- M. Anders
- D. Trezzi
- BELLINI, ALESSANDRO
- M. Aliotta
- D. Bemmerer
- C. Broggini
- A. Caciolli
- COSTANTINI, HEIDE
- CORVISIERO, PIETRO
- T. Davinson
- Z. Elekes
- M. Erhard
- A. Formicola
- Z. s. Fulop
- G. Gervino
- A. Guglielmetti
- C. Gustavino
- G. y. Gyurky
- M. Junker
- LEMUT, ALBERTO
- M. Marta
- C. Mazzocchi
- R. Menegazzo
- PRATI, PAOLO
- C. Rossi Alvarez
- D. Scott
- E. Somorjai
- O. Straniero
- T. Szucs
- Others:
- Anders, M.
- Trezzi, D.
- Bellini, Alessandro
- Aliotta, M.
- Bemmerer, D.
- Broggini, C.
- Caciolli, A.
- Costantini, Heide
- Corvisiero, Pietro
- Davinson, T.
- Elekes, Z.
- Erhard, M.
- Formicola, A.
- Fulop, Z. s.
- Gervino, G.
- Guglielmetti, A.
- Gustavino, C.
- Gyurky, G. y.
- Junker, M.
- Lemut, Alberto
- Marta, M.
- Mazzocchi, C.
- Menegazzo, R.
- Prati, Paolo
- Rossi Alvarez, C.
- Scott, D.
- Somorjai, E.
- Straniero, O.
- Szucs, T.
Description
The production of the stable isotope 6Li in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological 6Li plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of 7Li abundances and would point to a predominantly primordial origin of 6Li , contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang 6Li production must be revisited. The main production channel for 6Li in the Big Bang is the 2H(α,γ)6Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an α-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400keV α-beam energy and for comparison also using an americium-beryllium neutron source
Additional details
- URL
- http://hdl.handle.net/11567/405344
- URN
- urn:oai:iris.unige.it:11567/405344
- Origin repository
- UNIGE