Published 2007
| Version v1
Report
Numerical evaluation of a non-conforming discontinuous Galerkin method on triangular meshes for solving the time-domain Maxwell equations
Creators
Contributors
Others:
- Numerical modeling and high performance computing for evolution problems in complex domains and heterogeneous media (NACHOS) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Alexandre Dieudonné (JAD) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)-Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
- INRIA
Description
We report on a detailed numerical evaluation of the non-dissipative, non-conforming discontinuous Galerkin (DG) method on triangular meshes, for solving the two-dimensional time-domain Maxwell equations. This DG method combines a centered approximation for the evaluation of fluxes at the interface between neighboring elements of the mesh, with a second order leap-frog time integration scheme. Moreover, non-conforming meshes with arbitrary-level hanging nodes are allowed. Here, our objective is to assess the convergence, the stability and the efficiency of the method, but also discuss its limitations, through numerical experiments for 2D propagation problems in homogeneous and heterogeneous media with various types and locations of material interfaces.
Additional details
Identifiers
- URL
- https://hal.inria.fr/inria-00175738
- URN
- urn:oai:HAL:inria-00175738v2
Origin repository
- Origin repository
- UNICA