Published 2022
| Version v1
Journal article
Efficiently combining α CenA multi-epoch high-contrast imaging data. Application of K-Stacker to the 80 hours NEAR campaign
Contributors
Others:
- Laboratoire d'Astrophysique de Marseille (LAM) ; Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS)
- Observatoire de la Côte d'Azur (OCA) ; Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)
- Institut de Planétologie et d'Astrophysique de Grenoble (IPAG) ; Centre National d'Études Spatiales [Toulouse] (CNES)-Observatoire des Sciences de l'Univers de Grenoble (OSUG ) ; Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France -Institut national des sciences de l'Univers (INSU - CNRS)-Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE)-Université Grenoble Alpes (UGA)-Météo-France
- Astrophysique Interprétation Modélisation (AIM (UMR_7158 / UMR_E_9005 / UM_112)) ; Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Description
Context. Keplerian-Stacker is an algorithm capable of combining multiple observations acquired at different epochs by taking into account the orbital motion of a potential planet present in the images to boost the ultimate detection limit. In 2019, a total of 100 h of observation was allocated to Very Large Telescope (VLT) Spectrometer and Imager for the mid-infrared (VISIR) instrument for the New Earths in the α Centauri Region (NEAR) survey, a collaboration between European Southern Observatory (ESO) and Breakthrough Initiatives, to search for low mass planets in the habitable zone of the α Cen AB binary system. A weak signal (S/N ~ 3) was reported around α Cen A, at a separation of ≃ 1.1 au, corresponding to the habitable zone.
Aims: Our study is aimed at determining whether K-Stacker is also capable of detecting the low-mass planet candidate with similar orbital parameters, which was previously found by the NEAR team. We also aim to search for additional potential candidates around a Cen A by utilizing the orbital motion to boost the signal and by generally placing stronger constraints on the presence of other planets in the system.
Methods: We re-analysed the NEAR data using K-Stacker. This algorithm is a brute-force method that is equipped to find planets in observational time series and to constrain their orbital parameters, even if they have remained undetected in a single epoch.
Results: We scanned a total of about 3.5 × 105 independent orbits, among which close to 15% correspond to fast-moving orbits on which planets cannot be detected without taking into account the orbital motion. We found only a single planet candidate that matches the C1 detection reported in Wagner et al. (2021, Nat. Commun., 12, 922). However, since this constitutes a re-analysis of the same data set, more observations will be necessary to confirm that C1 is indeed a planet and not a disk or other data artifact. Despite the significant amount of time spent on this target, the orbit of this candidate remains poorly constrained due to these observations being closely distributed across 34 days. We argue that future single-target deep surveys would benefit from a K-Stacker based strategy, where the observations would be split over a significant part of the expected orbital period to better constrain the orbital parameters.
Conclusions: This application of K-Stacker to high-contrast imaging data in the mid-infrared demonstrates the capability of this algorithm in aiding the search for Earth-like planets in the habitable zone of the nearest stars with future instruments of the E-ELT, such as METIS.
Aims: Our study is aimed at determining whether K-Stacker is also capable of detecting the low-mass planet candidate with similar orbital parameters, which was previously found by the NEAR team. We also aim to search for additional potential candidates around a Cen A by utilizing the orbital motion to boost the signal and by generally placing stronger constraints on the presence of other planets in the system.
Methods: We re-analysed the NEAR data using K-Stacker. This algorithm is a brute-force method that is equipped to find planets in observational time series and to constrain their orbital parameters, even if they have remained undetected in a single epoch.
Results: We scanned a total of about 3.5 × 105 independent orbits, among which close to 15% correspond to fast-moving orbits on which planets cannot be detected without taking into account the orbital motion. We found only a single planet candidate that matches the C1 detection reported in Wagner et al. (2021, Nat. Commun., 12, 922). However, since this constitutes a re-analysis of the same data set, more observations will be necessary to confirm that C1 is indeed a planet and not a disk or other data artifact. Despite the significant amount of time spent on this target, the orbit of this candidate remains poorly constrained due to these observations being closely distributed across 34 days. We argue that future single-target deep surveys would benefit from a K-Stacker based strategy, where the observations would be split over a significant part of the expected orbital period to better constrain the orbital parameters.
Conclusions: This application of K-Stacker to high-contrast imaging data in the mid-infrared demonstrates the capability of this algorithm in aiding the search for Earth-like planets in the habitable zone of the nearest stars with future instruments of the E-ELT, such as METIS.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://hal.science/hal-03935725
- URN
- urn:oai:HAL:hal-03935725v1
Origin repository
- Origin repository
- UNICA