Published May 11, 2024
| Version v1
Journal article
WhARIO: whole-slide-image-based survival analysis for patients treated with immunotherapy
Contributors
Others:
- E-Patient : Images, données & mOdèles pour la médeciNe numériquE (EPIONE) ; Inria Sophia Antipolis - Méditerranée (CRISAM) ; Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
- Hôpital Pasteur [Nice] (CHU)
- Laboratory of Clinical and Experimental Pathology ; Centre Hospitalier Universitaire de Nice (CHU Nice)
- Service Pneumologie-Allergologie [CHU Toulouse] ; Pôle Clinique des Voies respiratoires [CHU Toulouse] ; Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)
- Institut Universitaire du Cancer de Toulouse - Oncopole (IUCT Oncopole - UMR 1037) ; Université Toulouse III - Paul Sabatier (UT3) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Centre Hospitalier Universitaire de Toulouse (CHU Toulouse)-Institut National de la Santé et de la Recherche Médicale (INSERM)
- Département d'oncologie médicale [Centre Georges-François Leclerc] ; Centre Régional de Lutte contre le cancer Georges-François Leclerc [Dijon] (UNICANCER/CRLCC-CGFL) ; UNICANCER-UNICANCER
- Département de Pathologie [CHU Rouen] ; CHU Rouen ; Normandie Université (NU)-Normandie Université (NU)-Université de Rouen Normandie (UNIROUEN) ; Normandie Université (NU)
- Génétique biologique histologie [CHRU de Besançon] ; Centre Hospitalier Régional Universitaire de Besançon (CHRU Besançon)
- CHU Nice [Cimiez] ; Hôpital Cimiez [Nice] (CHU)
- ANR-19-P3IA-0002,3IA@cote d'azur,3IA Côte d'Azur(2019)
Description
PurposeImmune checkpoint inhibitors (ICIs) are now one of the standards of care for patients with lung cancer and have greatly improved both progression-free and overall survival, although <20% of the patients respond to the treatment, and some face acute adverse events. Although a few predictive biomarkers have integrated the clinical workflow, they require additional modalities on top of whole-slide images and lack efficiency or robustness. In this work, we propose a biomarker of immunotherapy outcome derived solely from the analysis of histology slides.ApproachWe develop a three-step framework, combining contrastive learning and nonparametric clustering to distinguish tissue patterns within the slides, before exploiting the adjacencies of previously defined regions to derive features and train a proportional hazards model for survival analysis. We test our approach on an in-house dataset of 193 patients from 5 medical centers and compare it with the gold standard tumor proportion score (TPS) biomarker.ResultsOn a fivefold cross-validation (CV) of the entire dataset, the whole-slide image-based survival analysis for patients treated with immunotherapy (WhARIO) features are able to separate a low- and a high-risk group of patients with a hazard ratio (HR) of 2.29 (CI95=1.48 to 3.56), whereas the TPS 1% reference threshold only reaches a HR of 1.81 (CI95=1.21 to 2.69). Combining the two yields a higher HR of 2.60 (CI95=1.72 to 3.94). Additional experiments on the same dataset, where one out of five centers is excluded from the CV and used as a test set, confirm these trends.ConclusionsOur uniquely designed WhARIO features are an efficient predictor of survival for lung cancer patients who received ICI treatment. We achieve similar performance to the current gold standard biomarker, without the need to access other imaging modalities, and show that both can be used together to reach even better results.
Abstract
International audienceAdditional details
Identifiers
- URL
- https://inria.hal.science/hal-04573158
- URN
- urn:oai:HAL:hal-04573158v1
Origin repository
- Origin repository
- UNICA